Answers and Discussion From Problem #8., AA214

1. Subject: Transonic Potential Equations

The Transonic Potential Equations or the Linear Cauchy-Riemann Equations are formed from the
coupling of the steady compressible continuity equation of fluid dynamics

Ozpu+ Oypv =0 (1)

and the vorticity definition

—0zv+ 0yu=0 (2)

with vorticity w = 0 the irrotational potential assumption. Here p is density, u, v the Cartesian
velocity components and the isentropic assumption leads us to

p:<1—72;1(u2+v2—1))”1j (3)

with 7 = 1.4 the ratio of specific heats. Pressure is defined as p = p” .

The linear Cauchy-Riemann equations are recovered above and below by setting p = 1 instead of
Eq 3.

Combining Eq 1 and Eq 2 in vector form we have

0.f(q) + 0,8(q) = 0 (4)

(). 1= (). o= ()

Note: One approach to solving these equations is to cast them as a hyperbolic system where we
solve

where

oq+ 0,f+ 0,8 =0 (6)

(a) For Eq 6
i. Find the flux Jacobians of f and g.

ii. Determine the eigenvalues and conditions under which the system is hyperbolic. (Hint:
A system is hyperbolic if the eigenvalues of it’s flux Jacobians are real.)

ANSWER: Define % = A and g—g = B

The Jacobian matrices A and B are

_[=p+ o pP ]
A= | 0 1
and
[ 2—7, 2—7,,21
_|pTur —p 4 p Y
B= | -1 0

The eigenvalues of the Jacobian matrices are interesting and shed some light on the form of
the scheme’s stability and formulation. The eigenvalues of A and B are

MA) = —p+p*77d?, 1



P2 Yuv £ \/pt=2Tue? + dp — 4p2-102
2
For the system to be hyperbolic the A’s must be real. Since p > 0, this implies that

AB) =

P2 4 dp > 4p? 2

Discussion: We can examine this condition in light of assumptions on the values of u and ».
If v = 0 the condition is always satisfied, if u = 0 then p'=72? < 1 which for 0.2 < p < 2
(quite a large range of p) implies that 0 < |v| < 1.9, a reasonable range. What has not been
discussed here, is that the full potential equations are limited to weak shock waves, which
translates in this case to |u|, |v| < 2.0, as a general rule.

The fluxes of the Euler equations are homogeneous of degree 1.

i. Are the above fluxes f and g homogeneous of degree 17, degree n?.
ii. If we replace Eq 3 with p = 1, what can be said about the properties of the system?

The fluxes in Eq. 4 are not homogeneous because of the nonlinear nature of Eq. 3.

f(aq) = (_ (1-25t? @ 402 = 1)) 7 ’“) # of(q)

av

This does not satisfy the homogenuity property, for any n.

f(aq) = (—agvu) =a <_,Uu) = af(q)

glaq) = (:ZZ) =a (:Z) = ag(q)

The system is linear and homogeneous of degree 1.

Forp=1,

and

Subject: Splitting/Factorization

i. Space vector definition The space vector for the natural ordering is
ul™ = [uy ug us ug us ug Uy ’Ug]T

ii. The space vector for an odd-even ordering is
u*) = [uy us us uz ug uq ug ‘Ug]T

iii. P, is the permutation matrix that permutes the odd-even ordering to the natural
ordering, and P, is the permutation matrix that permutes the natural ordering to the
odd-even ordering. Simply put

u®) = P u)
u® = P, ul™
The permutation matrices are easily deduced
[1. 0 0 00 0 0 0] (1.0 0 00 0 0 0]
00001 O0O0O0 001 0O0O0TO00O0
01 00 0O0O0UDO 00001000
000 0O0T1TTO0TUO0 000 O0O0O0T1TO0
Fe=too0 100000 ™ ™=|g 1000000
000 O0O0O0T1TP0 00 01T O0O0O0O0
000 1 00O00O0 000 O0O0T1O00O0
|00 0 0000 1] |00 00000 1]

Note that these permutation matrices are the transpose of each other and the inverse of
each other.



iv. A is a simple tridiagonal matrix
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Premultiplying the generic ODE in naturally ordered form by P,, gives

ulm)
P = AP 4 P g

Since the permutation matrices are not functions of time, P,,. can be brought inside the
time derivative on the LHS of the above equation to give

dP,,u™

=P, ANy 4 p,
7 u'™ + Py, f

Noting that P, Py, = I, and that multiplying a term by the identity matrix leaves the
term unchanged, the above equation can be written as

dP,,ul™
dt
Or more succintly as
(%)
dt
Comparing with the odd-even version of the ODE
du®)
— A
7t u’'+g

it readily follows that A®) = P,, AP, and g = P.,f = 0. So the odd-even ordered
spatial matrix operator is

-2 0 0 0 1 0 0 O
0O -2 0 0 1T 1 0 0
o 0 -2 0 0 1 1 0
A = Y o 0 0 -2 0 0 1 1
Az? 11 0 0 -2 0 0 O
o 1 1 0 0 -2 0 0
o o 1 1 0 0 -2 0
. 0 0 0 1 0 0 0 -2]

v. In an implicit Euler time differencing formulation of the generic ODE the time derivative
is first order accurate, and the spatial term, Awu, is evaluated at time n + 1.
du 1
o = 2 (s — )+ O(h) = Aup
or, equivalently,

[I — hA|tpyy = u, + O(R?)



Subtracting [ — hA]u, from both sides, and noting that Au, = u,41 — u,, gives
[[ — hA]Au, = hAu, + O(hz)

This is the delta form of the implicit algorithm. For the naturally ordered form the
implicit matrix operator is a simple tridiagonal matrix; for the odd-even form it’s a
banded matrix with a bandwidth of nine.

(b) System definition

i. Define the odd and even matrix operators as follows

-2 0 0 00000
0 -2 0 00000
0 0 -2 00000
4l _ Y 0 0 0 -2 0000
Az? 11 0 00000
0 1 1 00000
0 0 1 1 0000
| 0 0 0 1 0 0 0 0]
0000 1 0 0 0]
0ooo0oo0o 1 1 0 o0
6o ooo o 1 1 o0
- 0oo0ooo o o0 1 1
S Az2 |0 0 00 -2 0 0 O
0000 0 -2 0 0
0000 0 0 -2 0
| 0000 0 0 0 -2]
The resulting ODE is
du®)
— [4l0) ()] 4
— = A 4 A1)
ii. Define the diagonal matrix, D, and the upper matrix, U, as
-2 0 0 0 1100
v 0o -2 0 0 v 01 10
D=3z 0 o0 2 of ™M U=Fzm o011
0 0 0 -2 00 0 1
It readily follows that
D |04 04 | UT
Alo) = and A =
U |04 04| D

iii. Results from problem la 2a are easily adapted to give
[1=hA@ —ha@] ), = ul) + O(h?)
and in delta form
1= hA® — pA©) Au) = [hA) + KA 4l + O(h?)
and in factored delta form

(1= hA@] [1 = ha)] Aul) = [hAL) + hAO ] ul) + O(h?)

Since hQA(O)A(e)Au;*) is O(h?), the error term in the factored form remains O(h?).



iv. The odd and even matrix factors are

[I— hA<O>] - [

So clearly the odd matrix factor is a lower triangular matrix, and the even matrix factor
is an upper triangular matrix. The factoring produced an LU decomposition of the
implicit matrix operator for the odd-even ordering of the system without degrading the
order of accuracy. The system may now be solved by simple forward and backward
substitutions: Let

I,—hD |04 I,| —nUT

and [I— hA(E)] = [

—hU | 14 04 | Iy —hD

&iz*-})-l = quil)—l = [I - hA(E)] ’“51*4)-1

then

L)y = [1—ha®] )y = [pAl) + ha®)] ul?)
215;)1 may be solved for by forward substitution, and then ufl*_gl can be solved for by
backward substitution. This solution process offers a considerable savings. in terms of
multiplication and division operations count, over the direct inversion of the resulting
system from problem 1(a)v. Direct inversion using Gaussian elimination for an mxm
nonsymmetric fully populated matrix requires m(2m — 1)(2m + 1)/3 multiplication and
division operations, whereas forward and backward substitutions each require
m(m + 1)/2 multiplication and division operations.



